
Instruction Manual SU

Optional Accessories: Sound level meter calibrator (ASU- 01) Cable and software for RS 232C (ATC 01) External relay, AC adapter

3. Front panel description

3-1 Calibration Mark
3-2 Time Weighting
3-3 Memory state
3-4 Mark for **LN**
3-5 Weighting Icon
3-6 Function Mark
3-7 Battery indicator
3-8 Max Hold
3-9 Number memorized
3-10 Browsing Icon

3-11 Microphone
3-12 Display
3-13 Alarm LED
3-14 Weighting key
3-15 Fast/Slow key
3-16 Up/Save key
3-17 Down/Read key
3-18 Function key
3-19 Max Hold key
3-20 Power key
3-21 Delete/Menu
3-22 Cal. Adjusting
3-23 Jack for RS 232C interface
3-24 Jack for output
3-25 Jack for AC
3-26 Battery compartment / cover

4. Measuring procedure

4.1 The key 3-20 has to be pressed and released to switch on the instrument.

4.2 It has to be checked whether the function selected is right. If not, it can be changed by pressing the key 3-18.

The default setting is **Lp**, weighting **A**, Fast.

Lp – current sound pressure level

Leq – Equivalent Continuous A Sound pressure Level, i.e. arithmetically mean value in a period of time set.

Ln – Statistic analysis, i.e. which percentage of all measurement values is larger than or equal to the alarm value set by the user. For setting the alarm value, please see chapter 7.

4.3 It has to be checked whether the weighting is right. If not, it can be changed by pressing the key 3-14 to select "A", "C" or "Flat".

With the "A" weighting selected, the frequency response of the device is similar to the response of the human ear. "A" weighting is commonly used for environmental or hearing conversation programs such as OSHA regulatory testing and noise Ordinance law.

"C" weighting is a much flatter response and is suitable for the sound level analysis of machines, engines etc.

Note: Weighting "A" will be automatically selected when measuring "Leq".

4.4 The key 3-15 has to be used to select a Fast (125ms) or a Slow (1 second) response time.

Fast has to be selected to capture noise peaks and noises that occur very quickly.

Slow response has to be selected to monitor a sound source that has a consistent noise level or to average quickly changing levels. Slow response is selected for most applications.

4.5 The reading is the highest one if the icon "max" appears on the display. The reading is an instant value if "max" does not appear. This appearance is controlled by pressing the key 3-19 during the process of measurement.

5. Storing and recalling readings

5.1 In **'M'** state, the reading can be saved to the instrument together with measuring conditions by pressing the key 3-16. Then the icon **'M'** changes to **'M'** state automatically, while the number of memorized readings increases for 1.

Instruction Manual SU

5.2 No matter, in 'M' or in 'M' state, the memorized data can be browsed by pressing the key 3-17. The browsing state is marked by 'R' on the display. In 'R' state, all the readings memorized, can be recalled by pressing the or key.

5.3 To delete the memorized value in memory, the browsing state has just to be entered and the reading to be deleted has to be located by pressing the or key.

Then the key 3-21 has to be pressed. If there appears "Err0" on the display, this indicates that there is no more reading to delete.

6. How to set the "Leq" Time

Leq is used to access the rms average noise level over a preset period of time, often the starting point of a noise assessment. To take the Leq measurement, the period of time which has to be tested, must be selected. The longer the period of measurement time, the more accurate the Leq reading will be. To set the period of measurement time, the key 3-21 just has to be pressed for about 8 seconds until "Leq" appears on the display. Then the key has to be released and the time has to be selected among 10s, 1 min, 5 min, 10 min, 15 min, 30 min, 1 hour, 8 hours or 24 hours by pressing the Up (3-16) or Down (3-17) key.

To quit, any key except or key can be pressed.

7. How to set the alarm value

The alarm LED is on when the instant measurement value is bigger than or equal to the alarm value set. The default setting value at the factory is 85dB. It can be changed to any value between 30 and 130dB by the following steps:

The key 3-21 has to be pressed for about 5 seconds. It has to be released after "AL" is shown on the display.

Then or key have to be pressed to preset the alarm value as desired.

To quit, any key except or key can be pressed.

8. How to set the time of Auto Power off

The default setting for auto power off at the factory is 5 minutes, which means that the device will auto power off 5 minutes from the time of the last key operation. This can be changed by the user to any value between 1 to 9 minutes by the following steps:

The key 3-21 has to be pressed for about 10 seconds and it can be released after "AUTO" is shown on the display. Then the or key has to be pressed to preset the time as desired. To stop the function of auto power off, time just has to be preset to "0". So the device

will not be powered off automatically, it can only be shut down manually in that case.

9. Calibration

The standard method to calibrate the instrument requires an external calibrator (ASU-01) in addition to a small screw-driver.

9.1 Calibration of the device :

- The device has to be turned on.
- It has to be preset in the "A" weighting mode
- It also has to be preset the "SLOW" response mode
- Then the microphone has to be placed into the calibrator. The calibrator has to be switched ON.

e) The CAL potentiometer of the device has to be adjusted in the way that the device's display matches the output of the calibrator.

9.2 Calibration of the device by the inbuilt signal

The instrument has to be switched on to enter the calibration state. Then the key 3-18 has to be pressed until the icon "CAL" is to be seen on the display. The screw-driver has to be used to adjust the CAL potentiometer of the device in the way that the device shows 94dB.

10. Considerations

10.1 Wind blowing across the microphone increases the noise measurement. The *supplied foam cover* has to be used to cover the microphone when applicable.

10.2 The instrument may not be dismantled by inexperienced staff. There are no parts inside which might serve the user.

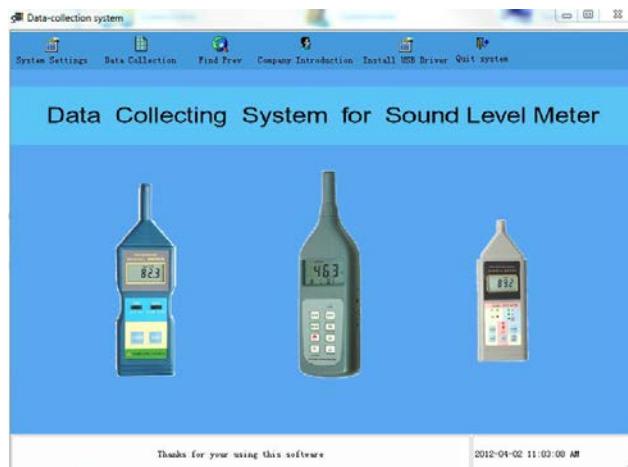
11. Battery replacement

11.1 When the battery voltage is less than approx. 5V, it is necessary to replace batteries.

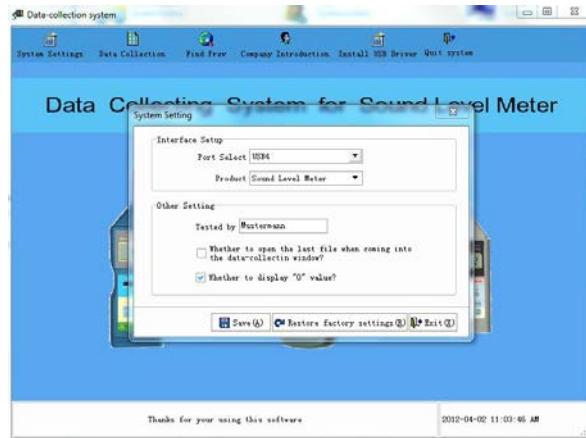
11.2 The 4 x 1.5 V batteries have to be installed correctly into the case .

11.3 If the device is not going to be used for an extended period, batteries have to be removed.

Note: If the AC adapter is used, batteries should be taken out.

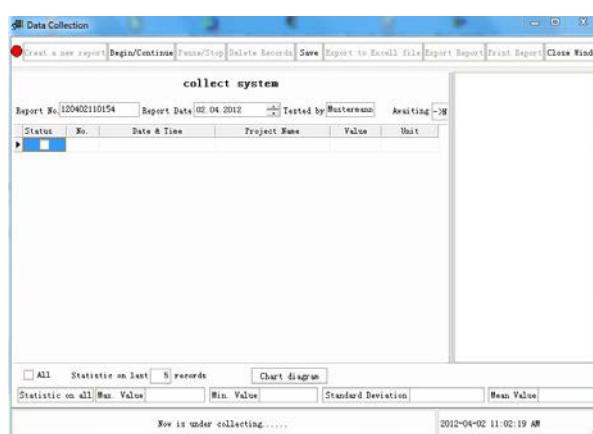

12. Takeover of data memory into software

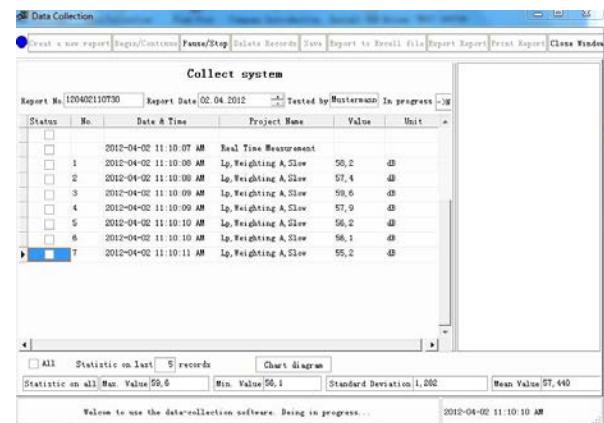
Important: First start the continuous data logging and then read out the stored data!


1. Connect the SU 130 to the PC (cable is optional available with software ATC 01).
2. Put the SU 130 into the Memory Read Mode (by pressing the READ-button).

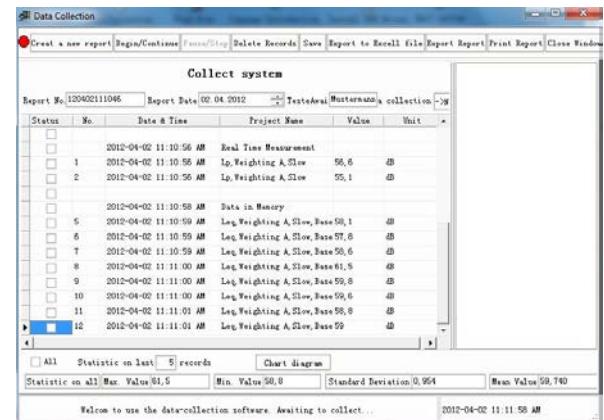
Instruction Manual SU

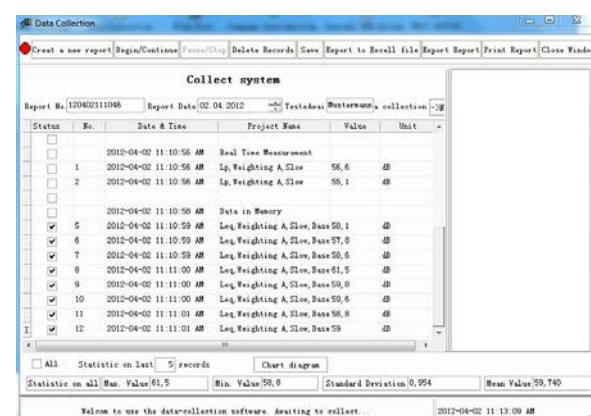
3. Start the appropriate software.


4. Select Port at System Settings at Interface Setup (e.g. COM1, USB4 or similar).


5. Select Product Sound Level Meter.

6. Press Save (A) button and leave this window by Exit (X).


7. Open Data Collection.


8. Press Continue Button- press button on SU 130 (e.g. FAST/SLOW) – Data acquisition Real Time starts

9. Press READ- button on the SU 130- data in memory. Readout of data starts and ends automatically with the last stored memory.

10. Select data (all which appears after "data in memory")accordingly and continue processing.

Instruction Manual SU

13. Declaration of Conformity

SAUTER GmbH
D-72336 Balingen

Tel: 0049-[0]7433-9976-174
Fax: 0049-[0]7433-9976-285
E-Mail: info@sauter.eu

Konformitätserklärung

Declaration of conformity for apparatus with CE mark

Konformitätserklärung für Geräte mit CE-Zeichen

Déclaration de conformité pour appareil portant la marque CE

Declaración de conformidad para aparatos con marca CE

Dichiarazione di conformità per apparecchi contrassegnati con la marcatura CE

English We hereby declare that the product to which this declaration refers conforms to the following standards.

Deutsch Wir erklären hiermit, dass das Produkt, auf das sich diese Erklärung bezieht, mit den nachstehenden Normen übereinstimmt.

Français Nous déclarons avec cette responsabilité que le produit, auquel se rapporte la présente déclaration, est conforme aux normes citées ci-après.

Español Manifestamos en la presente que el producto al que se refiere esta declaración está de acuerdo con las normas siguientes:

Italiano Dichiariamo con ciò che il prodotto a quale la presente dichiarazione si riferisce è conforme alle norme di seguito elencate.

Sound Level Meter: SAUTER SU 130

Mark applied	EU Directives	Standards
CE	89/336/EEC	EN 61326-1:1997, EN 55022 EN 61000-4-2 / -3

Date: 15.03.2011

Signature:
SAUTER GmbH
Management

SAUTER GmbH, Tieringer Str. 11-15, 72336 Balingen, Tel: +49 (0) 7433 9976 174, Fax: +49 (0) 7433 9976 285